用户名: 密码: 验证码:
Molecular cloning, characterization and expression analysis of two juvenile hormone esterase-like carboxylesterase cDNAs in Chinese mitten crab, Eriocheir sinensis
详细信息    查看全文
文摘
Precise regulation of methyl farnesoate (MF) titer is of prime importance throughout the crustacean life-cycle. Although the synthetic pathway of MF is well-documented, little is known about its degradation and recycling in crustaceans. Juvenile hormone esterase-like (JHE-like) carboxylesterase (CXE) is a key enzyme in MF degradation, thus playing a significant role in regulating the MF titer. We identified and characterized two cDNAs, Es-CXE1 and Es-CXE2, encoding JHE-like CXEs in Chinese mitten crab. Full-length cDNAs of Es-CXE1 and Es-CXE2 encode proteins composed of 584 and 597 amino acids, respectively, both of which contain a typical carboxylesterase domain. Alignment and phylogenetic analyses revealed that the Es-CXEs are highly similar to those of other crustaceans. To further validate their functions, we evaluated the mRNA expression patterns of the Es-CXEs in various tissues and in different physiological conditions. Tissue-specific expression analysis showed that the two Es-CXEs were predominantly expressed in the hepatopancreas and ovaries, which are the major tissues for MF metabolism. Es-CXE2 expression levels in the hepatopancreas and ovaries were about 100 and 25-fold higher, than the respective Es-CXE1 expressions. During ovarian rapid development stage, the global expressions of Es-CXEs were up-regulated in the hepatopancreas and down-regulated in the ovaries. After eyestalk ablation (ESA), the mRNA expressions of the two Es-CXEs were up-regulated in the hepatopancreas, further indicating their potential in degrading MF. Taken together, our results suggest that Es-CXEs, the key component of the juvenile hormone degradation pathway, may play vital roles in the development and reproduction of the Chinese mitten crab.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700