Spatially resolved electrical characterisation of graphene layers by an evanescent field microwave microscope
详细信息    查看全文
文摘
An evanescent field microwave microscope has been developed at the National Physical Laboratory. This instrument has multiple applications and has been developed to allow traceable measurements of local complex permittivity, unlike most other microwave scanning microscopes. In this paper we describe basic operation of the microscope and show measurements on graphene samples produced at Imperial College. The microscope obtains images by raster scanning of a wire probe in 鈥榗ontact mode鈥? Of particular interest to the graphene community is the possibility of being able to scan over large areas (up to 4脳4 mm2), and to be able to measure actual values of surface resistance without a requirement for metal contacts. As an ultrathin semimetal, a graphene layer being placed in the evanescent field of the probe is expected to behave like a lossy dielectric material, its microwave loss tangent is proportional to its conductivity. Employing a high Q dual mode re-entrant cavity as host resonator and a spherical metal probe of 180 渭m diameter, we found that spatial variations of the conductivity of graphene can be clearly resolved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700