Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics
详细信息    查看全文
文摘
In this paper, we propose a numerical method based on Wiener Chaos expansion and apply it to solve the stochastic Burgers and Navier–Stokes equations driven by Brownian motion. The main advantage of the Wiener Chaos approach is that it allows for the separation of random and deterministic effects in a rigorous and effective manner. The separation principle effectively reduces a stochastic equation to its associated propagator, a system of deterministic equations for the coefficients of the Wiener Chaos expansion. Simple formulas for statistical moments of the stochastic solution are presented. These formulas only involve the solutions of the propagator. We demonstrate that for short time solutions the numerical methods based on the Wiener Chaos expansion are more efficient and accurate than those based on the Monte Carlo simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700