Endogenous neurotensin attenuates dopamine-dependent locomotion and stereotypy
详细信息    查看全文
文摘
The neuropeptide neurotensin (NT) is highly sensitive to changes in dopaminergic signaling in the striatum, and is thought to modulate dopamine-mediated behaviors. To explore the interaction of NT with the dopamine system, we utilized mice with a targeted deletion of dopamine synthesis specifically in dopaminergic neurons. Dopamine levels in dopamine-deficient (DD) mice are less than 1 % of control mice, and they require daily administration of the dopamine precursor l-dihydroxyphenylalanine (l-DOPA) for survival. DD mice are supersensitive to the effects of dopamine, becoming hyperactive relative to control mice in the presence of l-DOPA. We show that 24 h after l-DOPA treatment, when DD mice are in a aaadopamine-depletedaaa state, Nt mRNA levels in the striatum of DD mice are similar to those in control mice. Administration of l-DOPA or l-DOPA plus the l-amino acid decarboxylase inhibitor, carbidopa, (C/l-DOPA) induced Nt expression in the striatum of DD mice. The dopamine D1 receptor antagonist, SCH23390, blocked C/l-DOPA-induced Nt. To test the hypothesis that this striatal Nt expression modulated dopamine-mediated behavior in DD mice, we administered SR 48692, an antagonist of the high affinity NT receptor, together with l-DOPA or C/l-DOPA. l-DOPA-induced hyperlocomotion and C/l-DOPA-induced stereotypy were potentiated by peripheral administration of SR 48692. Furthermore, intrastriatal microinjections of SR 48692 augmented l-DOPA-induced hyperlocomotion. These results demonstrate a dynamic regulation of striatal Nt expression by dopamine via D1 receptors in DD mice, and point to a physiological role for endogenous striatal NT in counteracting motor behaviors induced by an overactive dopamine system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700