A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength
详细信息    查看全文
文摘
In the present work, a new design of honeycomb is proposed by embedding the rhombic configuration into the normal re-entrant hexagonal honeycomb (NRHH), in order to enhance the honeycomb’s in-plane mechanical properties. Both theoretical analysis and numerical simulations are employed to calculate the in-plane mechanical properties of the new honeycomb under uniaxial compression, including Young’s modulus, Poisson’s ratio and critical buckling strength. The results show that the new honeycomb can maintain auxetic performance, while both the in-plane Young’s modulus and the critical buckling strength are significantly improved compared to the NRHH. Comparisons between the present design and other exiting enhanced periodic topologies are also carried out. With respect to them, the present design features superior performances. For these outstanding properties, this layout may provide a new concept for the optimization and design of auxetic materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700