Development of polymer composites using modified, high-structural integrity graphene platelets
详细信息    查看全文
文摘
Previous studies on polymer/graphene composites have mainly utilized either reduced graphene oxide or graphite nanoplatelets of over 10 nm in thickness. In this study we covalently modified 3-nm thick graphene platelets (GnPs) by the reaction between the GnPs鈥?epoxide groups and the end-amine groups of a commercial long-chain surfactant (Mw = 2000), compounded the modified GnPs (m-GnPs) with a model polymer epoxy, and investigated the structure and properties of both m-GnPs and their epoxy composites. A low Raman ID/IG ratio of 0.13 was found for m-GnPs corresponding to high structural integrity. A percolation threshold of electrical conductivity was observed at 0.32 vol% m-GnPs, and the 0.98 vol% m-GnPs improved the Young鈥檚 modulus, fracture energy release rate and glass transition temperature of epoxy by 14%, 387% and 13%, respectively. These significantly improved properties are credited to: (i) the low Raman ID/IG ratio of GnPs, maximizing the structural integrity and thus conductivity, stiffness and strength inherited from its sister graphene, (ii) the low thickness of GnPs, minimizing the damaging effect of the poor through-plane mechanical properties and electrical conductivity of graphene, (iii) the high-molecular weight surfactant, leading to uniformly dispersed GnPs in the matrix, and (iv) a covalently bonded interface between m-GnPs and matrix, more effectively transferring load/electron across interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700