Characterizations of gallium-doped ZnO films on glass substrate prepared by atmospheric pressure metal-organic chemical vapor deposition
详细信息    查看全文
文摘
Ga-doped zinc oxide (ZnO:Ga) films were grown on glass substrate by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) using diethylzinc and water as reactant gases and triethyl gallium (TEG) as an n-type dopant gas. The structural, electrical and optical properties of ZnO:Ga films obtained at various flow rates of TEG ranging from 1.5 to 10 sccm were investigated. X-ray diffraction patterns and scanning electron microscopy images indicated that Ga-doping plays an important role in forming microstructures in ZnO films. A smooth surface with a predominant orientation of (101) was obtained for the ZnO:Ga film grown at a flow rate of TEG = 7.5 sccm. Moreover, a lowest resistivity of 3.6 × 10− 4 Ω cm and a highest mobility of 30.4 cm2 V− 1 s− 1 were presented by the same sample, as evaluated by Hall measurement. Otherwise, as the flow rate of TEG was increased, the average transmittance of ZnO:Ga films increased from 75 % to more than 85 % in the wavelength range of 400–800 nm, simultaneously with a blue-shift in the absorption edge. The results obtained suggest that low-resistivity and high-transparency ZnO films can be obtained by AP-MOCVD using Ga-doping sufficiently to make the films grow degenerate and effect the Burstein–Moss shift to raise the band-gap energy from 3.26 to 3.71 eV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700