Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts
详细信息    查看全文
文摘
The objective of this study is to design a novel kind of scaffolds for blood vessel and nerve repairs. Random and aligned nanofibrous scaffolds based on collagen–chitosan–thermoplastic polyurethane (TPU) blends were electrospun to mimic the componential and structural aspects of the native extracellular matrix, while an optimal proportion was found to keep the balance between biocompatibility and mechanical strength. The scaffolds were crosslinked by glutaraldehyde (GTA) vapor to prevent them from being dissolved in the culture medium. Fiber morphology was characterized using scanning electron microscopy (SEM) and atomic-force microscopy (AFM). Fourier transform infrared spectroscopy (FTIR) showed that the three-material system exhibits no significant differences before and after crosslinking, whereas pore size of crosslinked scaffolds decreased drastically. The mechanical properties of the scaffolds were found to be flexible with a high tensile strength. Cell viability studies with endothelial cells and Schwann cells demonstrated that the blended nanofibrous scaffolds formed by electrospinning process had good biocompatibility and aligned fibers could regulate cell morphology by inducing cell orientation. Vascular grafts and nerve conduits were electrospun or sutured based on the nanofibrous scaffolds and the results indicated that collagen–chitosan–TPU blended nanofibrous scaffolds might be a potential candidate for vascular repair and nerve regeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700