Plasticized relaxor ferroelectric terpolymer: Toward giant electrostriction, high mechanical energy and low electric field actuators
详细信息    查看全文
文摘
Enhancing the electrostrictive strain under low electric field of a dielectric electroactive polymer (EAP) is essential in soft actuators applications. Conventional electrostrictive polymers suffer of the high electric fields usually required to reach sufficient strain. Here we report a new approach that greatly enhanced the strain under electric field and the mechanical energy density of fluorinated terpolymer EAP. A new all organic composite based on poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer (P(VDF-TrFE-CFE)) doped with bis(2-ethylhexyl) phthalate (DEHP) was synthesized. DEHP molecule acts as a plasticizer that leads to large dipolar interfacial effects. This chemical modification allows a 28-fold increase of the electrostrictive strain and a 215-fold increase of the mechanical energy density. As a consequence, this new approach permits the uses of the exceptional properties of the fluorinated terpolymer for an electric field nearly 5 times lower and represents a simple and effective solution to this technological barrier.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700