Erythropoietin and its antagonist regulate hypoxic fictive breathing in newborn mice
详细信息    查看全文
文摘
Clinical use of erythropoietin in adult and newborn patients has revealed its involvement in neuroprotection, neurogenesis, and angiogenesis. More recently, we showed in adult mouse, that brain erythropoietin interacts with the major brainstem centers associated with respiration to enhance the ventilatory response to acute and chronic conditions of physiological hypoxia (e.g., as occurring at high altitude). However, whether brain erythropoietin is involved in breathing regulation in newborns remains unknown. In this study, en bloc brainstem-spinal cord preparations were obtained from mice at postnatal day 4. After various periods (30, 60, or 90 min) of incubation with 0, 25, or 250 U of erythropoietin, preparations were superfused with artificial cerebrospinal fluid bubbled with normoxic or hypoxic gas mixtures. The electrophysiological fictive breathing produced by axons at the C4 ventral root was next recorded. Our results show that erythropoietin attenuates the hypoxia-mediated decrease of the central respiratory activity and improves post-hypoxic recovery. Additional analysis revealed that the soluble erythropoietin receptor (the endogenous erythropoietin antagonist) dramatically decreases neural hypoxic respiratory activity, confirming the specific erythropoietin effect on respiratory drive. These results imply that erythropoietin exerts main modulation and maintenance of respiratory motor output during hypoxic and post-hypoxic challenges in 4-days old mice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700