Pseudo-centrosymmetric matrices, with applications to counting perfect matchings
详细信息    查看全文
文摘
We consider square matrices A that commute with a fixed square matrix K, both with entries in a field F not of characteristic 2. When K2 = I, Tao and Yasuda defined A to be generalized centrosymmetric with respect to K. When K2 = −I, we define A to be pseudo-centrosymmetric with respect to K; we show that the determinant of every even-order pseudo-centrosymmetric matrix is the sum of two squares over F, as long as −1 is not a square in F. When a pseudo-centrosymmetric matrix A contains only integral entries and is pseudo-centrosymmetric with respect to a matrix with rational entries, the determinant of A is the sum of two integral squares. This result, when specialized to when K is the even-order alternating exchange matrix, applies to enumerative combinatorics. Using solely matrix-based methods, we reprove a weak form of Jockusch’s theorem for enumerating perfect matchings of 2-even symmetric graphs. As a corollary, we reprove that the number of domino tilings of regions known as Aztec diamonds and Aztec pillows is a sum of two integral squares.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700