Envelope size-tuning for transient disparity vergence
详细信息    查看全文
文摘
Our prior studies have demonstrated that the transient-vergence system responds preferably to dichoptic stimulus pairs that contain the highest combined energy, regardless of dichoptic differences in spatial frequency, contrast, orientation, or luminance polarity (Edwards, M., Pope, D. R., & Schor, C. M. (1998), Vision Research 38, 705; Pope, D. R., Edwards, M., & Schor, C. M. (1999) Vision Research 39, 575). This broadband tuning for spatial frequency, orientation and contrast is indicative of a second order (non-linear) extraction system. The current study examined the potential size-tuning of binocular channels to the contrast envelope that is extracted by a non-linear process. Stimuli were size-scaled Gabor patches with parallel and orthogonal carrier orientations that subtended a large (3.8°) disparity. Results indicate that the transient-vergence system exhibits broad band-pass tuning to overall size of dichoptic targets, independent of interocular differences in carrier orientation, spatial frequency or contrast. Equal sizes elicited a higher proportion of vergence responses than unequal sizes, however responses to unequal size still occurred over a 2-octave range, illustrating broad band-pass tuning. Size tuning was found to be broader for small than large envelope sizes. The broad tuning for envelope size is likely to result from the overlapping extracted low-pass frequency spectra of the contrast envelopes. However, the transient-vergence system also responds to monocular, hemi-retinal stimuli over a larger (3-octave) range. Thus some of the observed ‘binocular tuning’ may be due to these monocular responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700