Recurrent neural network for approximate nonnegative matrix factorization
详细信息    查看全文
文摘
A recurrent neural network solving the approximate nonnegative matrix factorization (NMF) problem is presented in this paper. The proposed network is based on the Lagrangian approach, and exploits a partial dual method in order to limit the number of dual variables. Sparsity constraints on basis or activation matrices are included by adding a weighted sum of constraint functions to the least squares reconstruction error. However, the corresponding Lagrange multipliers are computed by the network dynamics itself, avoiding empirical tuning or a validation process. It is proved that local solutions of the NMF optimization problem correspond to as many stable steady-state points of the network dynamics. The validity of the proposed approach is verified through several simulation examples concerning both synthetic and real-world datasets for feature extraction and clustering applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700