Influence of the 3D-conformation, glycan component and microheterogeneity on the epitope structure of Ole e 1, the major olive allergen: Use of recombinant isoforms and specific monoclonal antibodies
详细信息    查看全文
文摘
Ole e 1 is the main allergen of olive pollen, which is a major cause of pollinosis in countries of the Mediterranean area. Nine Ole e 1-specific murine monoclonal antibodies (mAbs), as well as two Ole e 1-isoforms and two Ole e 1-like allergens from lilac and privet, all of them obtained in Pichia pastoris by recombinant methods, have been used as tools to determine the role of the three-dimensional (3D)-folding, the glycan component and several point changes of the amino acid sequence in the binding of murine IgG mAbs and human IgE to the olive allergen. Seven mAb families (F1–F7) were established, two of which (F1 and F2) recognize continuous epitopes. The carbohydrate moiety of Ole e 1 was involved in the binding to F2 and F4, whereas F3 and F7 were able to bind to all Ole e 1 variants. The remaining families of IgG murine antibodies exhibited different affinities for the antigens assayed in a native or denatured conformation. Although the binding of human IgE to Ole e 1 was not affected by heat treatment, it was shown to be strongly dependent on the integrity of the disulfide bridges and was partially inhibited by F3–F7 IgG antibodies, their individual values ranging from 12 to 31 % and reaching 53 % with their mixture. The IgE from sera of olive-allergic patients showed a significant diversity of binding capacity to the members of the Ole e 1-like family due to the microheterogeneity of their polypeptide sequences, in spite of their highly conserved primary structures. Whereas one of the isoforms of Ole e 1 exhibits a highly similar behavior to the natural form, being a putative molecule for diagnostic purposes, other ones can be considered as hypoallergenic variants of this allergen and, thus, potential candidates to be used in immunotherapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700