Tin-Zinc oxide composite ceramics for selective CO sensing
详细信息    查看全文
文摘
Composite metal oxide gas sensors were intensely studied over the past years having superior performance over their individual oxide components in detecting hazardous gases. A series of pellets with variable amounts of SnO2 (0–50 mol%) was prepared using wet homogenization of the component oxides leading to the composite tin-zinc ceramic system formation. The annealing temperature was set to 1100 °C. The samples containing 2.5 mol% SnO2 and 50 mol% SnO2 were annealed also at 1300 °C, in order to observe/to investigate the influence of the sintering behaviour on CO detection. The sensor materials were morphologically characterized by scanning electron microscopy (SEM). The increase in the SnO2 amount in the composite ceramic system leads to higher sample porosity and an improved sensitivity to CO. It was found that SnO2 (50 mol%) - ZnO (50 mol%) sample exhibits excellent sensing response, at a working temperature of 500 °C, for 5 ppm of CO, with a fast response time of approximately 60 s and an average recovery time of 15 min. Sensor selectivity was tested using cross-response to CO, methane and propane. The results indicated that the SnO2 (50 mol%)-ZnO (50 mol%) ceramic compound may be used for selective CO sensing applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700