An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy
详细信息    查看全文
文摘
The anomalous cyclic coarsening behaviour of γ′ precipitates after ageing at 1073 K has been investigated for the low misfit commercial powder metallurgy (PM) Ni-based superalloy RR1000. Using scanning transmission electron microscope (STEM) imaging combined with absorption-corrected energy-dispersive X-ray (EDX) spectroscopy, the elemental segregation as a function of coarsening behaviour has been experimentally observed for secondary γ′ precipitates. Elemental EDX spectrum imaging has revealed nanoscale enrichment of Co and Cr and a depletion of Al and Ti within the γ matrix close to the γ-γʹ interface. Our experimental results, coupled with complementary modelling and synchrotron X-ray diffraction analysis, demonstrate the importance of elastic strain energy resulting from local compositional variations for influencing precipitate morphology. In particular, elemental inhomogeneities, as a result of complex diffusive interactions within both matrix and precipitates, play a crucial role in determining the rate of coarsening. Our findings provide important new evidence for understanding the microstructural evolution observed for advanced superalloys when they are exposed to different heat treatment regimes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700