Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics
详细信息    查看全文
文摘
Smoothed particle hydrodynamics is a robust Lagrangian particle method which is widely used in various applications, from astrophysics to hydrodynamics and heat conduction. It has intrinsic capabilities for simulating large deformation, composites, multiphysics events, and multiphase fluid flows. It is vital to use reliable boundary conditions when boundary value problems like heat conduction or Poisson equation for incompressible flows are solved. Since smoothed particle hydrodynamics is not a boundary fitted grids method, implementation of boundary conditions can be problematic. Many methods have been proposed for enhancing the accuracy of implementation of boundary conditions. In the present study a new approach for facilitating the implementation of Robin and Neumann boundary conditions is proposed and proven to give accurate results. Also there is no need to use complicated preprocessing as in virtual particle method. The new method is compared to an equivalent one dimensional moving least square scheme and it is shown that the present method is less sensitive to particle disorder.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700