Quantum-interference-enhanced thermoelectricity in single molecules and molecular films
详细信息    查看全文
文摘
We provide a brief overview of recent measurements and predictions of thermoelectric properties of single-molecules and porous nanoribbons and discuss some principles underpinning strategies for enhancing their thermoelectric performance. The latter include (a) taking advantage of steep slopes in the electron transmission coefficient T(E), (b) creating structures with delta-function-like transmission coefficients and (c) utilising step-like features in T(E). To achieve high performance, we suggest that the latter may be the most fruitful, since it is less susceptible to inhomogeneous broadening. For the purpose of extrapolating thermoelectric properties of single or few molecules to monolayer molecular films, we also discuss the relevance of the conductance-weighted average Seebeck coefficient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700