Left Atrial Appendage Obliteration: Mechanisms of Healing and Intracardiac Integration
详细信息    查看全文
文摘
| Figures/TablesFigures/Tables | ReferencesReferences

Objectives

The objectives of this study were: 1) to delineate the temporal course of histopathologic healing as the left atrial appendage (LAA) is obliterated by a mechanical device; and 2) to compare this process with other intravascular and intracardiac implanted technologies.

Background

Intracardiac device healing is incompletely understood. We thus studied the histopathology of device-based LAA obliteration.

Methods

Nine dog hearts were examined over time after LAA device placement and results were compared with human hearts with prior LAA obliteration using the same device.

Results

At 3 days in dogs, atrial surfaces were covered by fibrin, which sealed gaps between the LA wall and the device and filled the LA appendage cavity. At 45 days, endothelial cells covered the endocardial surface with underlying smooth muscle cells that sealed the device-LA interface. Regions with prior thrombus were replaced by endocardium surrounding the device membrane. Disorganized thrombus remained in the LAA body and at the periphery near the appendage walls. Mild inflammation was observed as thrombus resorbed. By 90 days, a complete endocardial lining covered the former LAA ostium. Organizing thrombus had become connective tissue, with no residual inflammation. The human necropsy hearts had similar findings. In these 4 hearts (139, 200, 480, and 852 days after implant), the ostial fabric membrane was covered with endocardium. The appendage surface contained organizing thrombus with minimal inflammation. Organizing fibrous tissue was inside the LAA cavity, prominent near the atrial wall. The LAA interior contained organizing thrombus.

Conclusions

This intracardiac device integration study delineated healing stages of early thrombus deposition, thrombus organization, inflammation and granulation tissue, final healing by connective tissue, and endocardialization without inflammation. These observations may yield insight into cellular healing processes in other cardiac devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700