A global optimization method based on multi-unit extremum-seeking for scalar nonlinear systems
详细信息    查看全文
文摘
Finding the global optimum of a nonlinear function is a challenging task that could involve a large number of functional evaluations. In this paper, an algorithm that uses tools from the domain of extremum-seeking is shown to provide an efficient deterministic method for global optimization. Extremum-seeking schemes typically find the local optimum by controlling the gradient to zero. In this paper, the multi-unit framework is used, where the gradient is estimated by finite difference for a given offset between the inputs. The gradient is pushed to zero by an integral controller. It is shown that if the offset is reduced to zero, the system can be made to converge to the global optimum of nonlinear continuous static, scalar maps. The result is extended to constrained problems where a switching control strategy is employed. Several illustrative examples are presented and the proposed method is compared with other methods of global optimization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700