Towards reducing carbon content in silicon/carbon anodes for lithium ion batteries
详细信息    查看全文
文摘
Conducting carbon is added to electrodes of lithium ion batteries (LIBs) to provide electrical conductivity. Because this carbon does not contribute to capacity, there is a drive towards decreasing its content with a goal of lowering the mass of the electrode. Reduced graphene oxide (RGO) has a high electrical conductivity, and is a potential alternative to traditionally used conductive carbon black (CB) in anodes for LIBs. Because of its high aspect ratio, RGO is expected to form a conducting network at lower volume loadings than CB. We report the use of this concept to significantly reduce carbon loading in silicon-carbon anodes for LIBs formed by emulsion-templating. Anodes with 1 wt% RGO and 14 wt% CB (15 wt% total carbon) showed specific capacities and capacity retentions that were comparable to anodes with 30 wt% CB with or without RGO. The capacity retention was significantly lower for anodes with 15 wt% total carbon that had no RGO. Cryo-SEM and SEM images, and electrochemical impedance spectroscopy, confirmed the formation of a conducting carbon network at 15 wt% total carbon loading when 1 wt% of the CB was replaced with RGO, and the lack of a well-connected network without the RGO.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700