Applications of the Heine and Bauer-Muir transformations to Rogers-Ramanujan type continued fractions
详细信息    查看全文
文摘
In this paper we show that various continued fractions for the quotient of general Ramanujan functions <span id="mmlsi1" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022247X16306485&_mathId=si1.gif&_user=111111111&_pii=S0022247X16306485&_rdoc=1&_issn=0022247X&md5=b88ba68cb3274317b37d98e9081e0393" title="Click to view the MathML source">G(aq,b,λq)/G(a,b,λ)span><span class="mathContainer hidden"><span class="mathCode">si1.gif" overflow="scroll">Gstretchy="false">(aq,b,λqstretchy="false">)stretchy="false">/Gstretchy="false">(a,b,λstretchy="false">)span>span>span> may be derived from each other via Bauer&ndash;Muir transformations. The separate convergence of numerators and denominators play a key part in showing that the continued fractions and their Bauer&ndash;Muir transformations converge to the same limit. We also show that these continued fractions may be derived from either Heine's continued fraction for a ratio of <span id="mmlsi2" class="mathmlsrc">source" class="mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022247X16306485&_mathId=si2.gif&_user=111111111&_pii=S0022247X16306485&_rdoc=1&_issn=0022247X&md5=972701359f6b7d8d3ff947b0b550ecd4">ss="imgLazyJSB inlineImage" height="15" width="25" alt="View the MathML source" style="margin-top: -5px; vertical-align: middle" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022247X16306485-si2.gif">script>style="vertical-align:bottom" width="25" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0022247X16306485-si2.gif">script><span class="mathContainer hidden"><span class="mathCode">si2.gif" overflow="scroll">scripts>ϕ1scripts>scripts>2scripts>span>span>span> functions, or other similar continued fraction expansions of ratios of <span id="mmlsi2" class="mathmlsrc">source" class="mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022247X16306485&_mathId=si2.gif&_user=111111111&_pii=S0022247X16306485&_rdoc=1&_issn=0022247X&md5=972701359f6b7d8d3ff947b0b550ecd4">ss="imgLazyJSB inlineImage" height="15" width="25" alt="View the MathML source" style="margin-top: -5px; vertical-align: middle" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022247X16306485-si2.gif">script>style="vertical-align:bottom" width="25" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0022247X16306485-si2.gif">script><span class="mathContainer hidden"><span class="mathCode">si2.gif" overflow="scroll">scripts>ϕ1scripts>scripts>2scripts>span>span>span> functions. Further, by employing essentially the same methods, a new continued fraction for <span id="mmlsi1" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022247X16306485&_mathId=si1.gif&_user=111111111&_pii=S0022247X16306485&_rdoc=1&_issn=0022247X&md5=b88ba68cb3274317b37d98e9081e0393" title="Click to view the MathML source">G(aq,b,λq)/G(a,b,λ)span><span class="mathContainer hidden"><span class="mathCode">si1.gif" overflow="scroll">Gstretchy="false">(aq,b,λqstretchy="false">)stretchy="false">/Gstretchy="false">(a,b,λstretchy="false">)span>span>span> is derived. Finally we derive a number of new versions of some beautiful continued fraction expansions of Ramanujan for certain combinations of infinite products, with the following being an example:
ss="formula" id="fm0880">
ss="mathml"><span id="mmlsi4" class="mathmlsrc">source" class="mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022247X16306485&_mathId=si4.gif&_user=111111111&_pii=S0022247X16306485&_rdoc=1&_issn=0022247X&md5=6a88d51a47648700a0b5e3ea9848d6a6">ss="imgLazyJSB inlineImage" height="87" width="568" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022247X16306485-si4.gif">script>style="vertical-align:bottom" width="568" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0022247X16306485-si4.gif">script><span class="mathContainer hidden"><span class="mathCode">si4.gif" overflow="scroll">splaystyle="true" columnspacing="0.2em">sub>stretchy="false">(&minus;a,b;qstretchy="false">)sub>&minus;sub>stretchy="false">(a,&minus;b;qstretchy="false">)sub>sub>stretchy="false">(&minus;a,b;qstretchy="false">)sub>+sub>stretchy="false">(a,&minus;b;qstretchy="false">)sub>=stretchy="false">(a&minus;bstretchy="false">)1&minus;abss="0">&minus;stretchy="false">(1&minus;sup>a2sup>stretchy="false">)stretchy="false">(1&minus;sup>b2sup>stretchy="false">)q1&minus;absup>q2sup>space width="1em">space>ss="0">&minus;stretchy="false">(a&minus;bsup>q2sup>stretchy="false">)stretchy="false">(b&minus;asup>q2sup>stretchy="false">)q1&minus;absup>q4sup>ss="0">&minus;stretchy="false">(1&minus;sup>a2sup>sup>q2sup>stretchy="false">)stretchy="false">(1&minus;sup>b2sup>sup>q2sup>stretchy="false">)sup>q3sup>1&minus;absup>q6sup>ss="0">&minus;stretchy="false">(a&minus;bsup>q4sup>stretchy="false">)stretchy="false">(b&minus;asup>q4sup>stretchy="false">)sup>q3sup>1&minus;absup>q8sup>ss="0">&minus;ss="0">.span>span>span>ss="temp" src="/sd/blank.gif">

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700