Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)
详细信息    查看全文
文摘
Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that makes possible the fabrication of three-dimensional near-net-shaped parts directly from computer models. EBM technology has been continuously evolving, optimizing the properties and the microstructure of the as-fabricated alloys. Ti-6Al-4V ELI (Extra Low Interstitials) titanium alloy is the most widely used and studied alloy for this technology and is the focus of this work. Several research works have been completed to study the mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy. However, the relationship is not completely understood, and more systematic research work is necessary in order to attain a better understanding of these features. In this work, samples fabricated at different locations, orientations, and distances from the build platform have been characterized, studying the relationship of these variables with the resulting material intrinsic characteristics and properties (surface topography, microstructure, porosity, micro-hardness and static mechanical properties). This study has revealed that porosity is the main factor controlling mechanical properties relative to the other studied variables. Therefore, in future process development, decreasing the porosity should be considered the primary goal in order to improve mechanical properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700