Simulation of novel process of CO2 conversion to liquid fuels
详细信息    查看全文
文摘
Carbon dioxide utilization by conversion with hydrogen into liquid fuels was simulated based on the experimental data of a novel process using CHEMCAD. A detailed kinetic model of the novel iron-based spinel catalyst that included reverse water gas shift (RWGS), Fischer-Tropsch synthesis (FTS), C5+ hydrocarbons and oxygenates, oligomerization of olefins, as well as hydrogenation of light olefins (C2C4) was employed. The RWGS reaction rate was significantly inhibited by steam produced in the process because of the chemical equilibrium limitation and apparent strong adsorption. Therefore, periodical water removal is critical in the process, which required operation in several reactors in series or in a reactor with recycle. Those system configurations were examined and compared over a range of temperatures, pressures, weight hourly space velocities and carbon dioxide with hydrogen feed ratios. The other aspect of this process which has a significant impact on performance is the oligomerization of light olefins. Both reactors-in-series and single reactor with recycle improved dramatically the productivity and the selectivity to C5+.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700