Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel
详细信息    查看全文
文摘
The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied. The microstructural evolution was characterized using scanning electron microscopy and transmission electron microscopy. Kinetic modeling was carried out using the software DICTRA. The results indicated Fe2 (W, Mo) Laves phase has formed during creep with 200 MPa applied stress at 883 K for 243 h. The experimental results showed a good agreement with thermodynamic calculations. The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa, whereas, creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa. Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature. Microstructures at the vicinity of fracture surface, the gage portion and the threaded ends of creep rupture specimens were also observed, indicating that creep tensile stress enhances the coarsening of Laves phase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700