Complex dynamics of a reaction-diffusion epidemic model
详细信息    查看全文
文摘
In this paper, we investigate the complex dynamics of a reaction-diffusion model incorporating demographic and epidemiological processes with zero-flux boundary conditions. By the method of Lyapunov function, the global stability of the disease free equilibrium and the epidemic equilibrium was established. In addition, the conditions of Turing instability were obtained and the Turing space in the parameters space were given. Based on these results, we present the evolutionary processes that involves organism distribution and their interaction of spatially distributed population with local diffusion, and find that the model dynamics exhibits a diffusion-controlled formation growth to ¡°holes, holes-stripes, stripes, spots-stripes and spots?pattern replication. Furthermore, we indicate that the diseases?spread is getting smaller with increasing, and the increasing the diffusion of infectious will increase the speed of diseases spreading. Our results indicate that the diffusion has a great influence on the spread of the epidemic and extend well the finding of spatiotemporal dynamics in the epidemic model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700