Atomic scale imaging of structural variations in La(1-x)/3LixNbO3 (0 ≤ x ≤ 0.13) solid electrolytes
详细信息    查看全文
文摘
Solid-state Li-ion battery electrolyte materials La(1-x)/3LixNbO3 (LLNbO) are layered A-site-deficient perovskites with complex structural features resulting from their high intrinsic cation vacancy concentrations. We report an atomic-scale study of a series of single crystals of LLNbO with Li contents x = 0, 0.04, 0.07, and 0.13 using state-of-the-art scanning transmission electron microscopy. By combining high angle annular dark field and annular bright field imaging techniques, columns of heavy and light atoms could be imaged simultaneously with atomic resolution. Structure modulation within La-rich layers, observed in all samples, was strongest for Li content x = 0.07, the content which has been reported to exhibit the highest conductivity. Unlike for end member La1/3NbO3 (x = 0), for Li content x = 0.04, significant tilting of NbO6 octahedra occurs, with regions of different tilting directions corresponding to nanodomains within the crystal. This tilting and the associated nanodomains are absent when x = 0.07, but occur again when x = 0.13, with even greater distortion of NbO6 octahedra. These structural differences help explain the changes in Li-ion conductivity with Li content in LLNbO.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700