The adsorption of multimeric enzymes on very lowly activated supports involves more enzyme subunits: Stabilization of a glutamate dehydrogenase from Thermus thermophilus
详细信息    查看全文
文摘
Glutamate dehydrogenase (GDH) from Thermus thermophilus is a homotrimeric enzyme that tends to dissociate at acidic pH values. GDH is readily adsorbed on highly activated anionic exchangers (HAAE), but hardly adsorbed on lowly activated supports (LAAE) or on highly activated epoxy supports. When using amino-epoxy supports, GDH immobilized on HAAE-epoxy and more slowly on LAAE-epoxy supports. Both immobilized biocatalysts were incubated at pH 10 for different times to increase the multipoint covalent attachment. LAAE-epoxy-GDH was stable at pH 4 and 25 °C, the enzyme stability did not depend on the enzyme concentration and did not release any subunit to the supernatant, in opposition to the results obtained using HAAE-epoxy supports. The general application of this strategy to stabilize multimeric enzymes was verified by immobilizing a crude protein extract. It seems that proteins adsorb on LAAE by the larger region of their surface (that is the one that involves the highest number of enzyme subunits), since it is the only area large enough to permit a multipoint ionic exchange on this LAAE. On the contrary, using HAAE, some proteins may become adsorbed by clusters that were rich in anionic groups and located in a corner of the multimer, involving only some of the subunits in the enzyme immobilization. That way, a careful design of the design of the support permits to take full advantage of the immobilization on heterofunctional supports.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700