Tuning plasticity of in-situ dendrite metallic glass composites via the dendrite-volume-fraction-dependent shear banding
详细信息    查看全文
文摘
This work performs a systematic investigation of identifying how the volume fraction of the in-situ dendrites affects the plasticity of metallic glass composites. The quasi-static uniaxial compressions show that the global plastic strain does not follows a linear rule-of-mixture with the dendrite volume faction, instead, a slow-fast-slow enhancement behaviour is observed with increasing dendrite volume fraction. It is demonstrated that the nucleation and propagation of shear bands in these composites are dependent on the dendrite volume fraction. When the dendrite volume fraction exceeds a critical value, multiple shear bands emerge in a spherical plastic zone around a dendrite. It is further proposed that the percolation of these spherical plastic zones contributes to the fast increase in the plastic strain of the glass composites. Our findings offer important implications for the microstructural optimization of the metallic glass composites with desirable mechanical properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700