An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography
详细信息    查看全文
文摘
In this paper, we present an efficient and general algorithm for decomposing multivariate polynomials of the same arbitrary degree. This problem, also known as the Functional Decomposition Problem (FDP), is classical in computer algebra. It is the first general method addressing the decomposition of multivariate polynomials (any degree, any number of polynomials). As a byproduct, our approach can be also used to recover an ideal I from its kth power Ik. The complexity of the algorithm depends on the ratio between the number of variables (n) and the number of polynomials (u). For example, polynomials of degree four can be decomposed in , when this ratio is smaller than . This work was initially motivated by a cryptographic application, namely the cryptanalysis of 2R schemes. From a cryptographic point of view, the new algorithm is so efficient that the principle of two-round schemes, including 2R schemes, becomes useless. Besides, we believe that our algorithm is of independent interest.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700