Hydrothermal synthesis of copper based nanoparticles: Antimicrobial screening and interaction with DNA
详细信息    查看全文
文摘
Copper based nanoparticles (Cu-based NPs) of different compositions and sizes have been hydrothermally synthesized by varying the reaction time in the presence of the biocompatible surfactants polyoxyethylene (20) sorbitan laurate (Tween 20) and polyethylene glycol 8000 (PEG 8000). Effective control of the above synthetic parameters gave rise to Cu, Cu2O and Cu/Cu2O NPs of 10-44 nm. The antibacterial activity of the NPs was screened against Gram-positive (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus) and Gram-negative (Xanthomonas campestris, Escherichia coli) bacteria. The Cu-based NPs induce pDNA degradation in a dose-dependent manner as well as extensive ds CT-DNA degradation. Cu2O NPs of 16 nm and 12 nm exhibit the lowest IC50 values (2.13 渭g/mL and 3.7 渭g/mL) against B. cereus and B. subtilis, respectively. The agarose gel electrophoresis of ds CT-DNA treated with Cu2O NPs demonstrated degradation at high concentration. In lower concentrations, viscosity measurements indicated groove binding. In regard to the enhanced antibacterial effect and specificity of Cu2O NPs against the Gram-positive strains, the activity pathway was further explored and ROS production and lipid peroxidation verified. The released copper ions 5.15 mg/L in distilled water and 16.32 mg/L in nutrient medium, found below the critical value to inhibit bacterial growth and thus nanosized composition effect is predominant.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700