Transcriptome profiling of the microalga Chlorella pyrenoidosa in response to different carbon dioxide concentrations
详细信息    查看全文
文摘
To enrich our knowledge of carbon dioxide (CO2)-concentrating mechanism (CCM) in eukaryotic algae, we used high-throughput sequencing to investigate the transcriptome profiling of the microalga Chlorella pyrenoidosa (Chlorophyta) response to different CO2 levels. Altogether, 53.86 million (M) and 62.10 M clean short reads of 100 nucleotides (nt) were generated from this microalga cultured at 4-fold air CO2 (control) and air CO2 concentrations by Illumina sequencing. A total of 32,662 unigenes were assembled from the two pooled samples. With an E-value cut-off of 1e-5, 9590, 6782, 5954, and 9092 unigenes were annotated in NR, Gene Ontology (GO), Eukaryotic Cluster of Orthologous Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. After screening, 51 differentially expressed unigenes were up-regulated and 8 were down-regulated in the air CO2 group, relative to the control. The transcript levels of eight differentially expressed unigenes were validated by real-time quantitative PCR, which manifested that thioredoxin-like protein, laminin subunit beta-1, and chlorophyll a/b binding protein might be associated with the utilization of inorganic carbon at low CO2 levels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700