An integer programming approach to support the US Air Force's air mobility network
详细信息    查看全文
文摘
The United States Air Force's air mobility command is responsible for creating a schedule and executing that schedule for a large-scale air mobility network that encompasses aircraft with prioritized missions. Aerial ports (airports) can process or park a maximum number of aircraft, called the maximum on ground (MOG). As the schedule changes due to disruptions, such as equipment failure or weather, the MOG constraint can cause the new schedule to be infeasible. Traditionally, re-planning the channel route schedule to adhere to MOG constraints has been a manual process that usually stops after the first feasible set of changes is found, due to the challenges of large amounts of data and urgency for a re-plan. We extend Bertsimas and Stock's integer program formulation for the commercial airline Multi-Airport Ground-Holding Problem to the air mobility network. Our integer programming formulation recommends delays to certain aircraft on the ground to minimize the effects of system-wide disruptions while taking account mission priorities of the aircraft.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700