Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields
详细信息    查看全文
文摘
Lattice Boltzmann method (LBM) is employed to investigate pore-scale flow and mass transport in a carbon paper gas diffusion layer (GDL) of interdigitated PEMFC. The carbon paper GDL is reconstructed using the stochastic method, and its macroscopic transport properties are numerically predicted. The predicted anisotropic permeabilities and effective diffusivity of the reconstructed GDL agree well with existing measurements. Then, effects of the porous structures of the carbon paper GDL are explored in terms of fluid flow, species transport and electrochemical reaction. The GDL porous structures greatly affect flow and mass transport, creating distinct specie concentration distribution and local current density distribution. Besides, simulations are performed to explore liquid water behaviors in the reconstructed GDL. The simulation results present a detailed description of the pore-scale liquid water behaviors. Further, simulations are performed to investigate the effects of land width and GDL contact angle on liquid water removal time and residual saturation. Narrower land reduces liquid water removal time and residual saturation. Higher contact angle increases the removal time and reduces the residual saturation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700