Cholesterol glucosylation by Helicobacter pylori delays internalization and arrests phagosome maturation in macrophages
详细信息    查看全文
文摘
Helicobacter pylori colonizes the human stomach and contributes to chronic inflammation of the gastric mucosa. H. pylori persistence occurs because of insufficient eradication by phagocytic cells. A key factor of H. pylori, cholesterol-α-glucosyltransferase encoded by capJ that extracts host cholesterol and converts it to cholesteryl glucosides, is important to evade host immunity. Here, we examined whether phagocytic trafficking in macrophages was perturbed by capJ-carrying H. pylori.

Methods

J774A.1 cells were infected with H. pylori at a multiplicity of infection of 50. Live-cell imaging and confocal microscopic analysis were applied to monitor the phagocytic trafficking events. The viability of H. pylori inside macrophages was determined by using gentamicin colony-forming unit assay. The phagocytic routes were characterized by using trafficking-intervention compounds.

Results

Wild type (WT) H. pylori exhibited more delayed entry into macrophages and also arrested phagosome maturation more than did capJ knockout mutant. Pretreatment of genistein and LY294002 prior to H. pylori infection reduced the internalization of WT but not capJ-knockout H. pylori in macrophages.

Conclusion

Cholesterol glucosylation by H. pylori interferes with phagosome trafficking via a lipid-raft and PI3K-dependent manner, which retards engulfment of bacteria for prolonged intracellular survival of H. pylori.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700