Physico-chemical surface properties of microalgae
详细信息    查看全文
文摘
This study reports a comprehensive set of experimentally measured physico-chemical surface properties of 12 different microalgae including fresh and seawater species of green algae, diatoms and cyanobacteria. The surface free energy and its components including the acid-base (AB), van der Waals (LW), electron donor/acceptor parameters were quantified based on contact angle measurements along with the Lifshitz-van der Waals acid-base approach using the probe liquid surface tension parameters proposed by van Oss et al. as well as by Della Volpe and Siboni. Moreover, the zeta and surface potentials of all species were determined using electrophoretic mobility measurements along with using Smoluchowski's model. Finally, the free energy of cohesion of the microalgae was also determined based on the calculated surface energy properties. The results showed that the electron donor parameter correlated well with the free energy of cohesion in all groups of microalgae. Moreover, species known to form colonies and exhibit benthic cultures had distinctly hydrophobic surfaces compared to microalgae prefering planktonic growth. These results indicate the importance of surface hydrophobicity for causing biofouiling or flocculation of cultures. Finally, the zeta potentials did not show a distinctive trend with the types of microalgae but the surface potentials were markedly larger for the salt water species. The reported methods and data are expected to provide critical information for researchers and technology developers concerned with cell to cell and cell to substrata interactions of microalgae in algal biomass cultivation and harvesting, biofouling of membranes and surfaces, as well as cell-surface interactions in photosynthetic microbial fuel cell technologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700