Organic light-emitting diodes using potassium chloride as efficiency and stability enhancers
详细信息    查看全文
文摘
A multilayer organic light-emitting diode (OLED) has been fabricated with a thin (1 nm) potassium chloride (KCl) layer inserted inside an electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum (Alq3). The structure of device was ITO/NPB/Alq3/KCl/Alq3/Al. The KCl layer was inserted inside 60 nm Alq3 at 10, 20 and 30 nm positions away from the Alq3/Al interface. The device shows the optical power and electroluminescence (EL) efficiency enhancements. The highest optical power density of devices with KCl at different positions is more than twice as high as that of the device without KCl. The EL efficiency is enhanced by more than 50 % by inserting the thin KCl insulating layer. The mechanism of KCl EL efficiency enhancer is that the thin KCl layer induces carrier trap sites and gives better recombination in the device. After air-exposure 42 h, the efficiency of the devices with KCl is enhanced but not for the device without KCl. The insertion of KCl inside Alq3 may improve the stability of OLED.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700