Organic light-emitting diodes with 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole layer inserted between hole-injecting and hole-transporting layers
详细信息    查看全文
文摘
Organic light-emitting diodes (OLEDs) were fabricated based on copper phthalocyanine (CuPc) (hole-injecting layer), N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) (hole-transporting layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (emission and electron-transporting layer). A 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) layer was inserted between CuPc and NPB. The effect of different thickness of PBD layer on the performance of the devices was investigated. The device structure was ITO/CuPc/PBD/NPB/Alq3/LiF/Al. Optimized PBD thickness was about 1 nm and the electroluminescent (EL) efficiency of the device with 1 nm PBD layer was about 48 percent improvement compared to the device without PBD layer. The inserted PBD layer improved charge carriers balance in the active layer, which resulted in an improved EL efficiency. The performance of devices was also affected by varying the thickness of NPB due to microcavity effect and surface-plasmon loss.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700