Marine snow formation by the toxin-producing diatom, Pseudo-nitzschia australis
详细信息    查看全文
文摘
The formation of marine snow (MS) by the toxic diatom Pseudo-nitschia australis was simulated using a roller table experiment. Concentrations of particulate and dissolved domoic acid (pDA and dDA) differed significantly among exponential phase and MS formation under simulated near surface conditions (16 °C/12:12-dark:light cycle) and also differed compared to subsequent particle decomposition at 4 °C in the dark, mimicking conditions in deeper waters. Particulate DA was first detected at the onset of exponential growth, reached maximum levels associated with MS aggregates (1.21 ± 0.24 ng mL−1) and declined at an average loss rate of ∼1.2% pDA day−1 during particle decomposition. Dissolved DA concentrations increased throughout the experiment and reached a maximum of ∼20 ng mL−1 at final sampling on day 88. The succession by P. australis from active growth to aggregation resulted in increasing MS toxicity and based on DA loading of particles and known in situ sinking speeds, a significant amount of toxin could have easily reached the deeper ocean or seafloor. MS formation was further associated with significant dDA accumulation at a ratio of pDA: dDA: cumulative dDA of approximately 1:10:100. Overall, this study confirms that MS functions as a major vector for toxin flux to depth, that Pseudo-nitzschia-derived aggregates should be considered ‘toxic snow’ for MS-associated organisms, and that effects of MS toxicity on interactions with aggregate-associated microbes and zooplankton consumers warrant further consideration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700