Bonded deficit round robin scheduling for multi-channel networks
详细信息    查看全文
文摘
In order to increase the link capacity in telecommunication networks the bandwidth of multiple channels can be aggregated by transmitting on them simultaneously. The latest data-over-cable service interface specification (DOCSIS 3.0) for hybrid fiber coax networks defines a mechanism for channel bonding at the link layer. Thus, the scheduler at the cable modem termination system, which distributes the packets on the network, not only has to support per-flow queuing but also has to distribute the packets to one modem over possibly several channels.

In this article we propose two downstream multi-channel packet scheduling algorithms designed to support scheduling amongst flows possibly using different numbers of channels. Both algorithms are based on the deficit round robin (DRR) scheduler. The bonded deficit round robin (BDRR) algorithm, has complexity dependent only on the number of the channels and requires only one queue per flow. It is shown that the algorithm is a latency-rate server and the latency is derived. Furthermore, BDRR bounds the packet reordering and the maximum bounds on the packet delay and the reorder buffer needed at the receiver are calculated. The paper explores also a second algorithm which has more similarities with load balancing algorithms. It uses fully independent channel schedulers thus avoiding the need for modification in the single channel DRR algorithm. The transmission channel for a packet is selected upon its arrival. However, the algorithm does not bound the latency and packet reorder for flows assigned to receive on multiple channels. Flows for which such bound is needed should be assigned on a single channel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700