The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease
详细信息    查看全文
文摘
In the Drosophila and mammalian RNA interference (RNAi) pathways, target RNA destruction is catalyzed by the siRNA-guided, RNA-induced silencing complex (RISC). RISC has been proposed to be an siRNA-directed endonuclease, catalyzing cleavage of a single phosphodiester bond on the RNA target. Although 5′ cleavage products are readily detected for RNAi in vitro, only 3′ cleavage products have been observed in vivo. Proof that RISC acts as an endonuclease requires detection of both 5′ and 3′ cleavage products in a single experimental system. Here, we show that siRNA-programmed RISC generates both 5′ and 3′ cleavage products in vitro; cleavage requires Mg2+, but not Ca2+, and the cleavage product termini suggest a role for Mg2+ in catalysis. Moreover, a single phosphorothioate in place of the scissile phosphate blocks cleavage; the phosphorothioate effect can be rescued by the thiophilic cation Mn2+, but not by Ca2+ or Mg2+. We propose that during catalysis, a Mg2+ ion is bound to the RNA substrate through a nonbridging oxygen of the scissile phosphate. The mechanism of endonucleolytic cleavage is not consistent with the mechanisms of the previously identified RISC nuclease, Tudor-SN. Thus, the RISC-component that mediates endonucleolytic cleavage of the target RNA remains to be identified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700