Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) differentially affect soil microorganisms and carbon dynamics
详细信息    查看全文
文摘
Knowledge about the influence of living roots on decomposition processes in soil is scarce but is needed to understand carbon dynamics in soil. We investigated the effect of dominant deciduous tree species of the Central European forest vegetation, European beech (Fagus sylvatica L.) and European ash (Fraxinus excelsior L.), on soil biota and carbon dynamics differentiating between root- and leaf litter-mediated effects. The influence of beech and ash seedlings on carbon and nitrogen flow was investigated using leaf litter enriched in 13C and 15N in double split-root rhizotrons planted with beech and ash seedlings as well as a mixture of both tree species and a control without plants. Stable isotope and compound-specific fatty acid analysis (13C-PLFA) were used to follow the incorporation of stable isotopes into microorganisms, soil animals and plants. Further, the bacterial community composition was analyzed using pyrosequencing of 16S rRNA gene amplicons. Although beech root biomass was significantly lower than that of ash only beech significantly decreased soil carbon and nitrogen concentrations after 475 days of incubation. In addition, beech significantly decreased microbial carbon use efficiency as indicated by higher specific respiration. Low soil pH probably increased specific respiration of bacteria suggesting that rhizodeposits of beech roots induced increased microbial respiration and therefore carbon loss from soil. Compared to beech ¦Ä13C and ¦Ä15N signatures of gamasid mites in ash rhizotrons were significantly higher indicating higher amounts of litter-derived carbon and nitrogen to reach higher trophic levels. Similar ¦Ä13C signatures of bacteria and fine roots indicate that mainly bacteria incorporated root-derived carbon in beech rhizotrons. The results suggest that beech and ash differentially impact soil processes with beech more strongly affecting the belowground system via root exudates and associated changes in rhizosphere microorganisms and carbon dynamics than ash.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700