Numerical solution of buoyancy MHD flow with magnetic potential
详细信息    查看全文
文摘
In this study, dual reciprocity boundary element method (DRBEM) is applied for solving the unsteady flow of a viscous, incompressible, electrically conducting fluid in channels under the effect of an externally applied magnetic field and buoyancy force. Magnetohydrodynamics (MHD) equations are coupled with the energy equation due to the heat transfer by means of the Boussinessq approximation. Then, the 2D non-dimensional full MHD equations in terms of stream function, temperature, magnetic potential, current density and vorticity are solved by using DRBEM with implicit backward Euler time integration scheme. Numerical results are obtained utilizing linear boundary elements and linear radial basis functions approximation for the inhomogeneities, in a double lid-driven staggered cavity and in a channel with backward facing step. The results are given for several values of problem parameters as Reynolds number (Re), magnetic Reynolds number (Rem), Hartmann number (Ha) and Rayleigh number (Ra). With the increase in Rem, both magnetic potential and current density circulate near the abrupt changes of the walls. The increase in Ha suppresses this perturbation, and forces the magnetic potential lines to be in the direction of the applied magnetic field. The boundary layer formation through the walls emerge in the flow and current density for larger values of Ha.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700