Valid Methodology for Using Discrete Event Simulation to Improve the Resource Consumption for the Manufacturing of Masonry Units
详细信息    查看全文
文摘
Owing to a high inflexibility of the factory layout, manufacturers of masonry units are bound to organizational adjustments seizing optimization measures. Regarding such plants, having a given complexity based on a rigid concatenation of heterogeneous sub-processes with heavy goods to be transported, conventional measures such as Lean Management principles involve great efforts in execution. Therefore, an IT solution for planning and controlling the operational processes is to be developed. This solution will be implemented through simulation-supported optimization to support dealing with a higher complexity and setting up a more resource-efficient manufacturing process.

As a basis, a corresponding factory is mapped sufficiently accurate in every detail in a discrete event analysis (DEA) model. In this paper, a methodology, how to configure an arbitrary calcium silicate masonry unit (CS) plant in a simulation model, is presented for the first time. Relevant data is cataloged and modelling approaches for the controlling methods are pointed out.

Special regard is paid to optimization measures at the crucial point of the transition from bulk material to piece goods, which has not been regarded yet in discrete event simulation modelling. The major aspect is a comparison of a unit-based approach and a variable-controlled approach, regarding the runtime.

A case study follows conclusively, which aided in validating the methodology by simulating various scenarios. As a result, several strategic and operational optimization potentials were identified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700