Molecular dynamics simulation of AlN thin films under nanoindentation
详细信息    查看全文
文摘
A large-scale molecular dynamics (MD) simulation of nanoindentation was performed to study the structural deformation on wurtzite aluminum nitride (B4-AlN). The nanoindentation induced B4-B1 phase-transition, amorphization and dislocation glide in AlN (0001) thin films were found. It shows that the B4-B1 phase-transition path includes two processes: an anti-parallel vertical movement of N and Al atoms along the [0001] axis, followed by horizontal rearrangements of the two types of atoms. Indentation force-depth (P-h) curve shows minor and major pop-in events. Detailed analysis of the results shows that the first three minor load drops in the P-h curve are related to the nucleation of amorphous structure, whereas the subsequent major load drop is related to the dislocation nucleation and expansion. The dislocations in AlN thin film involve perfect dislocations and Shockley partial dislocations, the latter is associated with the formation of intrinsic stacking faults (SFs) type I2 during the expansion of dislocation loops.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700