High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion
详细信息    查看全文
文摘
Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. However, the camera lens is never perfect and the lens distortion does influence the accuracy of the measurement result, which is often overlooked in the existing real-time 3-D shape measurement systems. To this end, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. The out-of-plane height is obtained firstly and the acquisition for the two corresponding in-plane coordinates follows on the basis of the solved height. Besides, a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the generated LUTs, a 3-D reconstruction speed of 92.34 frames per second can be achieved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700