用户名: 密码: 验证码:
Fibrillin-1 mgΔlpn Marfan syndrome mutation associates with preserved proteostasis and bypass of a protein disulfide isomerase-dependent quality checkpoint
详细信息    查看全文
文摘
Fibrillin-1 mutations promote Marfan syndrome (MFS) via complex yet unclear pathways. The roles of endoplasmic reticulum (ER) and the major ER redox chaperone protein disulfide isomerase-A1 in the processing of normal and mutated fibrillin-1 and ensuing protein secretion and/or intracellular retention are unclear. Our results in mouse embryonic fibroblasts bearing the exon-skipping mgΔlox-P-neo (mgΔlpn) mutation, which associates in vivo with MFS and in vitro with disrupted microfibrils, indicate a preserved ER-dependent proteostasis or redox homeostasis. Rather, mutated fibrillin-1 is secreted normally through Golgi-dependent pathways and is not intracellularly retained. Similar results occurred for the C1039G point mutation. In parallel, we provide evidence that PDIA1 physically interacts with fibrillin-1 in the ER. Moreover, siRNA against PDIA1 augmented fibrillin-1 secretion rates in wild-type cells. However, fibrillin-1 with the mgΔlpn mutation bypassed PDI checkpoint delay, while the C1039G mutation did not. This heretofore undisclosed PDIA1-mediated mechanism may be important to control the extracellular availability of function-competent fibrillin-1, an important determinant of disease phenotype. Moreover, our results may reveal a novel, holdase-like, PDI function associated with ER protein quality control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700