Chaotic dynamics analysis and control of iterative procedure of capacity spectrum method
详细信息    查看全文
文摘
The capacity spectrum method (CSM), capable of predicting the demands of forces and deformations of the inelastic system, has been applied in the ATC and FEMA guidelines. The deformation of an inelastic system is solved iteratively by using the equivalent linearization for CSM, which actually forms a nonlinear map or discrete dynamical system. However, the iterative procedure of CSM did not converge for some inelastic systems, and the complicated dynamical phenomena for the solutions such as the periodic oscillation, period-doubling bifurcation and chaos may occur, which were shown in the bifurcation plots of iterative map of the simplified CSM in ATC40 and FEMA440. This paper presents a novel method to analyze and control the non-convergence of the iterative procedure of CSM from the perspective of chaotic dynamics. The Lyapunov exponent of the dynamical system is employed to identify the evolutional state and stability of solutions. Finally, the stability transformation method as a simple, versatile and effective chaos feedback control approach is applied to control the convergent failure of CSM in ATC40 and FEMA440. The numerical results illustrate that the stability transformation method can capture the desired fixed points of the dynamical system and obtain the stable convergent solutions of CSM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700