Determination of the normal boiling point of chemical compounds using a quantitative structure-property relationship strategy: Application to a very large dataset
详细信息    查看全文
文摘
In this work, the quantitative structure-property relationship (QSPR) strategy is applied to predict the normal boiling point (NBP) of pure chemical compounds. In order to propose a comprehensive, reliable, and predictive model, a large dataset of 17,768 pure chemical compounds was exploited. The sequential search mathematical method has been observed to be the only viable search method capable for selection of appropriate model parameters (molecular descriptors) with regard to a data set as large as is used in this study. To develop the model, a three-layer feed forward artificial neural network has been optimized using the Levenberg-Marquardt (LM) optimization strategy. Using this dedicated strategy, satisfactory results were obtained and are quantified by the following statistical parameters: average absolute relative deviations of the predicted properties from existing literature values: 3.2 % , and squared correlation coefficient: 0.94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700