Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus
详细信息    查看全文
文摘
Imaging of meniscal tissue reveals an extracellular matrix comprised of collagen fibrils arranged in circumferential bundles and radially aligned tie fibers, implicating structural material anisotropy. Biochemical analyses demonstrate regional disparities of proteoglycan content throughout the meniscal body, a constituent known to affect the shearing response of fibrocartilagenous tissue. Despite this phenomenological evidence and previous mechanical testing implicating otherwise, the meniscus if often modeled as a homogeneous, transversely isotropic material with little regard for regional specificity and material properties. The aim of this investigation was to determine if shear stress response homogeneity and directionality exists in and between bovine menisci with respect to anatomical location (medial and lateral), region (anterior, central, and posterior) and fiber orientation (parallel and perpendicular). Meniscus explants were subjected to lap shear strain at 0.002?s? with the circumferential collagen fibers oriented parallel or perpendicular to the loading axis. Comparisons were made using a piecewise linear elastic analysis. The toe region shear modulus was calculated from the first observed linear region, between 3 % and 13 % strain and the extended shear modulus was established after 80 % of the maximum shear strain. The posterior region was significantly different than the central for the extended shear modulus, correlating with known proteoglycan distribution. Observed shearing anisotropy led to the use of an anisotropic hyperelastic model based on a two-fiber family composite, previously used for arterial walls. The chosen model provided an excellent fit to the sample population for each region. These data can be utilized in the advancement of finite element modeling as well as biomimetic tissue engineered constructs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700